
www.erlang-projects.org

Mickaël Rémond <mickael.remond@erlang-fr.org>

Messaging with Erlang and Jabber

Erlang User Conference '04

21st. October 2004

2

What are XMPP and Jabber ?

● XMPP stands for eXtensible Messaging & Presence Protocol

● XMPP is a generic and extensible messaging protocol based on
XML. It is now an IETF standard

● Jabber is an Instant Messaging protocol that rely on XMPP

● Very active community:

– Several server implementations of XMPP and Jabber

– Several client software and libraries

3

What does the XMPP protocol
looks like ?

● Interleaved XML document
streams: Client and serverstreams
form an XML document.

● First level tag: <stream>

● Three types of second levels tags:

– message: asynchronous
communications

– iq: Synchronous
communications

– presence: presence and status
data

4

Example XMPP telnet session

Step 0: telnet localhost 5222

Step 1: Open XMPP stream

Client sends:
<?xml version='1.0'?>

<stream:stream
xmlns:stream="http://etherx.jabber.org/streams"
to="localhost" xmlns="jabber:client">

Server answers:
<?xml version='1.0'?>

<stream:stream xmlns='jabber:client'
xmlns:stream='http://etherx.jabber.org/streams'
id='3694886828' from='localhost'>

5

Example XMPP telnet session

Step 2: Login

Client send login informations:

<iq type='set' id='auth'>
<query xmlns='jabber:iq:auth'>
 <username>mremond</username>
 <password>azerty</password>
 <resource>TelnetClient</resource></query></iq>

Server confirms login:

<iq type='result' id='auth'/>

6

Example XMPP telnet session

Step 2: Login

The server can returns an error on failed authentication for
example:

<iq type='error' id='auth'>
<query xmlns='jabber:iq:auth'>
 <username>mremond</username>
 <password>D</password>
 <resource>TelnetClient</resource></query>

 <error code='401' type='auth'>
 <not-authorized
 xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error></iq>

7

Example XMPP telnet session

Step 3: Presence

Client sends presence data

<presence/>

If applications in our client roster are online, our telnet client
receives presence packets:

<presence from='mremond5@localhost/tkabber'
 to='mremond@localhost/TelnetClient'>
 <priority>8</priority>
</presence>

8

Example XMPP telnet session

Step 3: Presence

From here, our telnet client is visible online by other clients:

9

Example XMPP telnet session

Step 4: Sending a message

Client sends a message to another user / application:

<message to='mremond5@localhost'>
<subject>Hello</subject>
 <body>I am chatting with a Telnet client !
 </body>
</message>

No answer from the server

10

Example XMPP telnet session

Step 5: Receiving a message

We can receive messages from other clients:

<message from='mremond5@localhost/tkabber'
to='mremond@localhost/TelnetClient'
type='chat'
xml:lang='fr-FR'>
 <body>Answer from the other side</body>
 <x xmlns='jabber:x:event'>
 <offline/>
 <delivered/>
 <displayed/>
 <composing/>
</x></message>

11

Example XMPP telnet session

Step 6: Presence update

Presence informations are updated (For example here, when a
user in our roster disconnect):

<presence from='mremond5@localhost/tkabber'
to='mremond@localhost/TelnetClient'
type='unavailable'/>

12

Example XMPP telnet session

Step 7: Closing the XML stream

Client closes XML client stream tag (This end a valid XML
document):

</stream:stream>

Server then closes XML stream tag and disconnect (This end the
second XML document):

</stream:stream>

13

XMPP bus design

● XMPP rely on a naturally distributed architecture (No central server !)

– Includes server to server communications (with domain routing
between servers)

– Includes gateways to various other protocols

14

XMPP protocol extensions

● XMPP is an extensible protocol (with XML namespaces) that
supports many interesting features:

– Service discovery and browsing

– Publish & Subscribe: Allow 1 to n communications.

– Reliable messages: can add confirmations delivery.

– Message queues for offline applications and messages
expiration.

– Users or applications search.

– Geolocalisation.

– Message archiving.

– ...

15

Fun things to do with XMPP and
Erlang

● Implementation: XMPP and Jabber servers are massively concurrent: a
Jabber server must handle huge community of users.

– A Jabber server in Erlang makes sense to handle massive concurrency.
– It can prove Erlang reliability, scalability, ability to handle concurrency

● Extensions: XMPP server protocol is build around a complete XML API for
client to server and server to server communications:

– Developping Erlang software agents that plug on the bus is easy:
Erlang expressiveness.

– It allows to use the bus as a mediation layer between Erlang and non-
Erlang software (Kind of web service but more simple and powerful)

– Several levels of interaction for Erlang-based extensions: Plug-in in the
XMPP bus with a service protocol or XMPP client connected to the bus
(client protocol)

● Use: XMPP can be used as an instant messaging platform or integrated with
other communication services.

16

Implementing an XMPP server in
Erlang

17

ejabberd

● ejabberd is an Erlang-based XMPP server implementation.

● It has been designed to support clustering, fault-tolerance and high-
availability.

● It supports many features and extensions of the Jabber protocol:

– Built-in Multi-User Chat service

– Distributed database (Mnesia)

– Built-in IRC transport

– Built-in Publish-Subscribe service

– Support for LDAP authentification

– Service discovery

● It is more scalable than the most used open source implementation (Jabberd1.4
and Jabber2).

18

Benchmarks: how does ejabberd
perform ?

● Jabber benchmarks realized with the Tsunami benchmarking
tool.

● Ejabberd performs very well:

– It can route more than 2000 simple messages per
second (on a single CPU 1,5 Ghz machine).

– It can handle a huge number of concurrent users on a
single machine (Has reached 7000 users connected
without troubles. We need to push the test further).

– This good performance is achieved while being the most
featureful and stable server XMPP.

– ejabberd design can be improved to achieve better
performance.

19

ejabberd
simultaneous users Delay to send short messages

Response time and connection establishement

20

The benchmark server

● CPU: Bi-Xeon 2,4 Ghz
● Ram: 1 Go
● Operating System: Linux

Note: The second CPU was not used as only
one ejabberd instance was running on the
server.

21

Developing XMPP clients in
Erlang

22

Jabberlang: Helper library to write
XMPP client in Erlang

● Jabberlang is a client library to write XMPP client in
Erlang.

● It can be used both a library or as Erlang behaviour.

● It allow to write XMPP services in Erlang.

● Can be used for inter Erlang programs communication.
Several options for inter applications communications:

– term to binary <-> binary_to_term

– UBF

– ASN.1

23

Jabberlang features

● Auto registration
● Subscriptions management
● Roster management
● Message and IQ packet support

24

Jabberlang: Simple echo (library
version)

-module(xmpp_echo).

-export([start/1, presence/4, message/7]).

start(Host) ->

 {ok, XMPP} = xmpp:start(Host),

 xmpp:set_login_information(XMPP, "mremond",{password,"azerty"},"ErlangEcho"),

 xmpp:set_callback_module(XMPP, ?MODULE),

 xmpp:connect(XMPP).

%% Ignore presence packets

presence(_XMPP, _Type, _Attrs, _Elts) -> ok.

%% Echo: Reply to messages with the same message

message(XMPP, Type, From, Subject, Body, Attrs, _Elts) ->

 xmpp:message(XMPP, From, Type, Subject, Body).

25

Jabberlang: Simple echo
(behaviour and attributes 1/2)
-module(xmpp_echo_behaviour).
-behaviour(gen_xmpp_client).

%% XMPP configuration attributes
-host("localhost").
-port(5222).
-username("mremond").
-authentication({password,"azerty"}).
-resource("Erlang echo behaviour").

%% Optional:
-include("xmpp.hrl").

%% Behaviour callbacks
-export([init/2,

 presence/4,
 message/7]).

-export([start/0]).

26

Jabberlang: Simple echo
(behaviour and attributes 2/2)
%% Module API
start() ->
 gen_xmpp_client:start_link(?MODULE, [], []).

%% gen_xmpp_client callbacks
init(Args, State) ->
 {ok, State}.

%% Ignore presence packets
presence(_XMPP, _Type, _Attrs, _Elts) ->
 ok.

%% Echo: Reply to messages with the same message
message(XMPP, Type, From, Subject, Body, Attrs, _Elts) ->
 xmpp:message(XMPP, From, Type, Subject, Body).

27

Jabberlang: Simple echo
(behaviour and no attributes 1/2)

-module(xmpp_echo_behaviour2).
-behaviour(gen_xmpp_client).

%% Optional:
-include("xmpp.hrl").

%% Behaviour callbacks
-export([init/2,

 presence/4,
 message/7]).

-export([start/0]).

28

Jabberlang: Simple echo
(behaviour and no attributes 2/2)

%% Module API
start() ->
 Args = [

 {host, "localhost"},
 {port, 5222},
 {username, "mremond"},
 {authentication, {password, "azerty"}},
 {resource, "Echo XMPP behaviour 2"}],

 gen_xmpp_client:start_link(?MODULE, Args, []).

%% gen_xmpp_client callbacks
init(Args, State) ->
 {ok, State}.

%% Ignore presence packets
presence(_XMPP, _Type, _Attrs, _Elts) ->
 ok.

%% Echo: Reply to messages with the same message
message(XMPP, Type, From, Subject, Body, Attrs, _Elts) ->
 xmpp:message(XMPP, From, Type, Subject, Body).

29

Using our simple echo client from
a Jabber client

30

Erlang to Erlang communication
through XMPP

● We launch the Erlang program two time as two
differents resources

● The program receives messages, extracts
Erlang term and increments the value and send
it back to where it came from, and so on (ping
– pong).
{ok, XMPP} = xmpp_erlang_example:start("ping").

{ok, XMPP2} = xmpp_erlang_example:start("pong").

xmpp_erlang_example:initialize_counter_pong(XMPP, 1).

31

Erlang to Erlang through XMPP 1/2
-module(xmpp_erlang_example).
-behaviour(gen_xmpp_client).

%% XMPP configuration attributes
-host("localhost").
-username("mremond").
-authentication({password,"azerty"}).

%% Optional:
-include("xmpp.hrl").

%% Behaviour callbacks
-export([init/2,

 presence/4,
 message/7]).

-export([start/1,
 initialize_counter_pong/2]).

%% Module API
start(Resource) ->
 gen_xmpp_client:start_link(?MODULE, [{resource,Resource}], []).

initialize_counter_pong(XMPP, Counter) ->
 xmpp:message(XMPP, "mremond@localhost/pong", "chat", "", encode
(Counter)).

32

Erlang to Erlang through XMPP 2/2
%% gen_xmpp_client callbacks
init(Args, State) ->
 {ok, State}.

%% Ignore presence packets
presence(_XMPP, _Type, _Attrs, _Elts) ->
 ok.

%% Reply to increment
message(XMPP, Type, From, Subject, Body, Attrs, _Elts) ->
 Value = decode(Body),
 io:format("Value: ~p~n", [Value]),
 xmpp:message(XMPP, From, Type, Subject, encode(Value+1)).

%% Take term and return encoded string
encode(Term) ->
 httpd_util:encode_base64(binary_to_list(term_to_binary(Term))).

%% Take String and return term
decode(String) ->
 binary_to_term(list_to_binary(httpd_util:decode_base64(String))).

33

Extending the services offered by
a standard Jabber server

34

J-EAI: an XMPP based integration
tool

● J-EAI is an Enterprise Application
Integration tool.

● It is intended to control and organize data
streams in a given information system.

● It allow transformation, routing, queueing
of all the data exchanges between
applications in a given company or outside a
company.

35

J-EAI: an XMPP based integration
tool

● J-EAI supports handy features such as:
– Messages trace, to know what is exchanged

between applications,

– Error message trace (« hospital »), to be able
to take actions upon message problems,

– Connectors to existing protocols and
applications,

– Enhanced publish & subscribe mechanism,

– Full control from a central console,

36

Integrating XMPP with other
applications

37

Integration in Web application

● XMPP can turn web applications into event-based systems.
You are not anymore limited to pull mode. You can send
events to the web browser.

● Those features are being implemented as browser
extensions.

● Metafrog, a project tracker platform, will be the test-bed for
this development approach:

– Go to http://metafrog.erlang-projects.org

– Look at light bulbs

38

SIP and XMPP integration

● SIP / XMPP gateway: Running together ejabberd and yxa to
share user base and presence information. Can provide:

– Integration between SIP and XMPP client. It could be
possible to see if someone is one the phone from a Jabber
client.

– Missed called or voice mail could be moved from the SIP
protocol to other (mail or XMPP).

39

Using XMPP for Erlang distribution
?

● Using XMPP for Erlang distribution could allow to develop
distributed applications running through the Internet.

● This approach can solve some security aspects: Rosters
configuration can decide if two process are allowed to exchanged
messages.

● SSL is supported.

● Performance penalty: only relevant for non heavy-loaded critical
message passing applications.

● Application design in such a way could switch to Erlang standard
distribution to get more performance.

40

Thank you !

● Alexey Shchepin: Lead ejabberd developer

● Jonathan Bresler: Benchmarks

● Nicolas Niclausse: Benchmarks and lead Tsunami
developer

● Christophe Romain: development on Erlang
REPOS

● Thierry Mallard: Help for the conference

● Catherine Mathieu: Help for preparing the Erlang
REPOS EUC 2004 CDROM

41

References

● http://www.jabber.org
● http://www.jabber.org/press/2004-10-04.php
● http://ejabberd.jabberstudio.org/
● http://www.erlang-projects.org/
● Erlang REPOS CDROM (see Erlang-projects

website)

42

Messaging with Erlang and Jabber

Questions

