
A Virtual World Distributed Server developed in Erlang 
as a Tool for analysing Needs 

of Massively Multiplayer Online Game Servers 
 

Michał Ślaski 
Erlang Training and Consulting Ltd. 

London, United Kingdom 
michal@erlang-consulting.com 

Marcin Gazda 
AGH University of Science and Technology 

Al. Mickiewicza 30 
30-059 Krakow, Poland 

 
 

ABSTRACT 
At present massively multiplayer online games allow several 
thousands of players to stay in a single, persistent virtual world. 
Because of the fast growing interest in this type of servers, we 
started researching their efficiency and scalability. Our target was 
an analysis of the MMOG server, which could service up to 1000 
players in a single virtual world. We made an assumption that the 
server will be distributed and running on a dedicated cluster. As 
the implementation platform we chose Erlang/OTP its main 
advantages being integration with a distributed database, soft real-
time and supporting distributed applications. In this paper we 
discuss the realisation of the project, and practical aspects of the 
measurement of server parameters.   

Keywords 
Massively Multiplayer Online Game, Erlang, Load Testing, 
Distributed Server. 

1. INTRODUCTION 
Massively multiplayer online games (MMOG) are a dynamically 
developing segment of the computer games industry. Even though 
there are many difficulties that you need to overcome while 
building this type of systems, there has been a significant increase 
in the interest in MMOG throughout the last couple of years. In 
the year 2004 the total income from selling online games was 
over 1.5 billion US dollars. In the year 2006 the total income is 
predicted to be twice as big. 

In classic multiplayer games, like Quake, the number of 
players usually is under 20. At present one of the most popular 
MMOG in Europe and USA is World of Warcraft released by 
Blizzard Entertainment, in which several thousands users play on 
each server. MMOGs are characterised by big demands for the the 
system and for the network infrastructure. Thousands of players 
staying concurrently in the same virtual world, interacting with 
each other and changing the state of the game environment, 
generate heavy network traffic and a heavy server load.  

Not many titles were as successful as the World of Warcraft. 
Most of them had technical faults and lacked in attractive 
gameplay. To provide a good level of gameplay, every user needs 
to have an up-to-date information about the state of the virtual 
world. This state changes every time when the user takes an 

action (like moving his character or collecting an object) leading 
to the conflict between capacity and coherence. It is impossible to 
guarantee that a dynamically shared game state will change 
frequently and that every user will have a permanent access to the 
same and most current state. 

2. PROTOTYPING 
The main reason of failures in creating MMO games is the 

fact that you can only fully test it at the end of the developing 
process. All of the leaks and mistakes in the design can be noticed 
during beta tests when thousands of users start playing it. It is 
important to prototype every solution in order to simulate players 
and check if the solution is appropriate. During the phase of 
prototyping you can experiment with the functional and technical 
aspects of the system and you should determine the architecture 
of the system. 

2.1 Using Erlang/OTP for the prototype 
Usually prototypes are developed on hardware not as strong 

as the target one, so it is important that the platform used for 
prototyping is compatible with different operation systems and it 
is not dedicated to a specific one. Another requirement for the 
platform is the possibility of a quick and easy development 
process. There is a need for mechanisms that can support 
distributed architectures, because these are the most promising 
directions of research. Supporting high availability and efficient 
internal communication are also significant. This is why Erlang 
Open Telecom Platform was chosen. Important features from our 
point of view are: open source, its own virtual machine, light 
processes and the distributed database Mnesia. 

Handling a big amount of users requires concurrent oriented 
programming. This can be accomplished with Erlang processes – 
one process for each user. There is a need of scalability of the 
system, what can be realised by distributing the server on a cluster 
of machines. Erlang allows processes to communicate with each 
other by knowing only their PID and without knowing if they are 
run on the same node, so you can treat the cluster as one coherent 
system. Such persistence allows you to build prototypes 
effectively.  



3. IMPLEMENTATION 
For the sake of research a game client in Java and with Java3D 
library was developed. The application provides functionality 
similar to role playing games. Users can move their characters, 
collect objects, chat with each other and do some magic. 
Messages with the information about user actions are sent to the 
server and then dispatched to other connected users. 
The server was implemented in Erlang. All of the game data is 
stored in Mnesia tables. The Mnesia’s scheme was configured to 
keep the replicas of all tables on all nodes. Most frequently used 
data like socket binding or player’s position are stored in ETS 
hash tables. 
Erlang processes are organised in a supervision tree. The root 
process on every node is responsible for starting services assigned 
to this node. Services were implemented with the gen_server 
behaviour. There are two kinds of services: processing network 
traffic and processing user’s actions. When ‘network processing’ 
service is run, the node becomes an access point and it starts to 
listen on a TCP port for new connections. When ‘action 
processing’ service is run, then the node takes part in distributing 
the computations. 

 
Figure 1. System’s architecture 

The game terrain is divided into geographic zones assigned to the 
nodes processing the player’s actions. Every player is assigned to 
the zone in which he is standing. Processes controlling the players 
placed within the same zone are run on the same node. When the 
player moves to another zone, its controlling process is moved to 
the appropriate node. This operation needs a lot of calculations, so 
the algorithm was implemented to prevent often zone switches. 
The player is switched into another zone not when he crosses a 
zone border, but when he gets out of the zone range. 

4. SYSTEM PERFORMANCE ANALYSIS 
When the implementation of the system was finished, a game 
session with real players was organised. Seven people were 
playing for several hours so we could log all of their actions and 
carry out analysis on how often statistically a user takes an action. 
Then we generated scenarios for IDX-Tsunami which is a 
distributed load testing tool that can simulate TCP clients. A plug-
in for IDX-Tsunami was developed to support our protocol and to 
log the server performance. 

The research was done in two phases. During the first one two 
types of architectures were tested. The architecture of the first 
type is built by single-function nodes, which means that every 
node is processing either network traffic or player’s actions. The 
architecture of the second type is built by double-function nodes, 
which means that every node provides both services. 

For every architecture the maximum number of players that it can 
handle was determined. We determined the number by analysing 
several different indicators, such as the time in which the server 
replies for messages, outgoing network traffic, number of 
outgoing packets and the utilisation of the CPU on the server side. 

number of nodes processing network traffic and players actions

n
u

m
b

e
r 

o
f 

p
la

y
e
rs

0 1 2 3 4 5 6 7 8 9 10
100

200

300

400

500

600

700

800

900

Legend
maximum number of players that can be handled by the architecture

 
Figure 2. Architectures with double-function nodes 

According to research, zone based solutions are highly dependant 
on the distribution of players in the world. We made an 
assumption that players are spread around the world equally and 
this kind of situation could be possible if the game world is big 
enough. But the fact is that when many players are standing in the 
same region, like during battles, the server can be overloaded. 

During the second phase we worked on synchronizing issues. Let 
imagine that two players are looking at the same mushroom lying 
on the ground. One of them moves near the mushroom and picks 
it up. Then the message is sent to the server. Before the server 
passes this message to the second player, he can still see the 
mushroom, so he can try to pick it up. If he dose so, obviously he 
will fail, because the mushroom is already collected. We 
measured the probability that a player would or would not fail in 
two kinds of situations: when the server is not overloaded and 
when it is overloaded. In the second case players more often 
cannot take successful actions, because the state of the world 
which they can observe is desynchronized from the state on the 
server. 



time of the test [s]

n
u

m
b

e
r 

o
f 

tr
a
n

sa
ct

io
n

s 
/

 n
u

m
b

e
r 

o
f 

p
la

y
e
rs

0 100 200 300 400 500 600 700 800 900 1,000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Legend
successful actions
not successful actions
y=0.04855 (successful)
y=0.0009119 (not successful)

 
Figure 3. Server not overloaded, more successful actions. 

 

time of the test [s]

n
u

m
b

e
r 

o
f 

tr
a
n

sa
ct

io
n

s 
/

 n
u

m
b

e
r 

o
f 

p
la

y
e
rs

0 100 200 300 400 500 600 700 800 900 1,000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Legend
successful actions
not successful actions
y=0.02619-3.269×10-5x (successful)
y=0.01056-4.175×10-6x (not successful)

 
Figure 4. Server overloaded, more actions fail.  

5. CONCLUSION 
To summarize we found the Erlang Open Telecom Platform very 
appropriate for developing prototypes of the distributed MMOG 
system. Because of the fact that you can quickly build a solution 
and then experiment with it, you can examine different algorithms 
in a relatively short period of time. 

6. ACKNOWLEDGMENTS 
University supervisor: Stanisław Ciszewski, AGH University of 
Science and Technology, Kraków, Poland. 

Nicolas Niclausse, author of the IDX-Tsunami tool, which was 
used for the players’ simulation. 

7. REFERENCES 
[1] J. Armstrong, R. Virding, C.Wikstrom, M. Williams, 

Concurrent Programming in Erlang. Prentice-Hall, 1996. 
[2] A.G. Bosser, Massively Multiplayer Online Games: 

matching Game Design with Technical Design, IMAGINA, 
June, 2004.  

[3] IGDA Online Games SIG, 2004 Persistent Worlds 
Whitepaper, http://www.igda.org/online/, December, 2004.  

[4] B. Knutsson, H. Lu, W. Xu, B. Hopkins, Peer-to-Peer 
Support for Massively Multiplayer Games, INFOCOM 2004, 
March, 2004. 

[5] D. Saha, S. Sahu, A. Shaikh, A Service Platform for On-Line 
Game, Proceedings of NetGames 2003 Workshop, May, 
2003. 

[6] MMOGCHART.COM, http://www.mmogchart.com 
[7] K. Milligan, Massively successful - MMORPGs come of 

age, http://keathmilligan.net/view.php?id=448, December, 
2004. 

[8] IDX-Tsunami distributed load testing tool, 
http://tsunami.idealx.org/ 

 


	INTRODUCTION
	PROTOTYPING
	Using Erlang/OTP for the prototype

	IMPLEMENTATION
	SYSTEM PERFORMANCE ANALYSIS
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

