ERICSSON 2
e

Why did we create Erlang?

Mike Williams
Ericsson AB
Stockholm
Sweden

mike@erix.ericsson.se

ACM Uppsala 20030829 Ericsson AB 1 Mike Williams



ERICSSON 2
|

Maybe it didn’t happen exactly this way, but
this is the way | think it should have
happened.

ACM Uppsala 20030829 Ericsson AB 2 Mike Williams



\

ERICSSON 2
[

Problem Domain - Highly concurrent and
distributed systems

e Thousands of simultaneous transactions

— Light weight transactions

— Greatest CPU load is implementing concurrency and
communication not computation

« Many computers
— different types (Bigendians, Littleendians, Intel, Sparc, PowerPC
etc)

— share nothing (no shared memory, different communication
mechanisms (Ethernet, ATM, Proprietary))

e Many OS’s

. Solaris, VxWorks, Windows, pSOS, Linux, etc

ACM Uppsala 20030829 Ericsson AB 3 Mike Williams



\

ERICSSON 2
[

Problem Domain - No down time

* Not allowed to have any planned or unplanned downtime

— Acceptance criterion: five nines = 99.999% uptime or 5 minutes
down time per year

 Recovery from software errors
— Large systems will have software bugs

 Recovery from hardware failure
— Network failure, processor failure, I/O failure

 Enable adding / deleting computers and other hardware at
run time

Update code in running systems

ACM Uppsala 20030829 Ericsson AB 4 Mike Williams



\

ERICSSON 2
[

Problem Domain - Ease of programming

e Highly "expressive" programming language
e Easy portability between processor architectures

e Large scale development (tens or even hundreds of
programmers)

* Incremental and exploratory programming

e Debugging and tracing - even in systems running at
customer sites

o Easy to fix bugs (patches) and upgrade at all phases of
design — even in systems running at customer sites

ACM Uppsala 20030829 Ericsson AB 5 Mike Williams



\

ERICSSON 2
[

Solution Domain - Concurrency

* No existing industry quality OS or language offers light
weight enough threads / processes

* Processes must be independent

— No shared resources
— One process must not be able to destroy another process

— Reduce event/state matrix by selective message reception
H

ACM Uppsala 20030829 Ericsson AB 6 Mike Williams



\

ERICSSON 2
[

Solution Domain — Concurrency & Distribution

e As we didn’'t want to modify or create and new OS,
Implementation of light weight, processes needed to be
done in “middleware”, l.e. on top of the OS.

« Making processes independent requires either control of
the MMU or a language without pointers (or with safe
pointers)

e Reducing the event/state matrix makes the signal / state
model undesirable.

— The signal state model requires a thread only suspending at the
top level, not in a function/subroutine. This makes proper RPC’s
H Impossible.

ACM Uppsala 20030829 Ericsson AB 7 Mike Williams



ERICSSON Z
T

Solution Domain — Concurrency & Distribution:
Design decisions

* Implement concurrency in a virtual machine on top of
operating system.

« Use a language without explicit pointers.

e Use copying message passing as only interprocess
communication mechanism.

* Implement selective message reception.

« Make communication between processes on different
machines identical to communication between processes
on same machine.

— Type information retained at runtime enables automatic conversion

= of Erlang terms to an external format.

ACM Uppsala 20030829 Ericsson AB 8 Mike Williams



ERICSSON Z
]

Solution Domain - No down time

* Principle for error detection: It is unsafe to allow the failing
part of the system to detect and correct failures itself

No ability to crash
The observer

Failure
detection Observer

&
Failure handler

Failing part of
the system Failure

Handling
(restart etc)

ACM Uppsala 20030829 Ericsson AB 9 Mike Williams



\

ERICSSON 2

Solution Domain - No down time

* A software error in one process is best detected in another
process

« Failure of one processor is best detected in another
processor

* Frequently we want to be able to abort all the processes in

a transaction If one of them fails for some reason
u

ACM Uppsala 20030829 Ericsson AB 10 Mike Williams



ERICSSON Z
T

Solution Domain - No down time
Design Decisions:

e Create a concept of a “link” between processes. If a
process fails, a special message (a signal) is sent to all the
processes to which it has links.

e Default action of a process receiving a signal indicating
failure of a process is to “die” and re-send on the signal to
all linked processes.

e By setting a special flag, (trap_exit) a processor can
override the default behaviour and receive the signal as an
ordinary message.

* Links are bi-directional — (maybe a design mistake?)
|

ACM Uppsala 20030829 Ericsson AB 11 Mike Williams



ERICSSON Z
T

Solution Domain - No down time
Design Decisions:

e TWO cases:

— Server with a lot of clients. If a client fails server needs to take
corrective action.

— A lot of processes in a transaction — if one fails, all should fail.

Link and Signal mechanism works across processor

boundaries.

— |If a processor fails, signals will be sent to all processes which have
links to processes in the failing processor.

Error handling philosophy: “Let it crash” and let other

m processes clear up the mess.

ACM Uppsala 20030829 Ericsson AB 12 Mike Williams



\

ERICSSON 2
[

Solution Domain - No down time

« Common design paradigm:

— Let all active transactions be represented by groups of linked
processes

— Store Inactive (steady state) transactions in replicated robust
database (Mnesia)

— Let resources needed by transactions be allocated by resource
allocator processes which trap_exits and free up resources from
failing transactions

— Supervisor processes which trap_exits restart failing application on
suitable processors. Data for these applications is the configuration
data needed and the data for transactions in a steady state. (same

n mechanism used for replacing processors).

ACM Uppsala 20030829 Ericsson AB 13 Mike Williams



ERICSSON 2
e

Solution Domain - No down time
Design Decisions:

e Design the virtual machine so new code can be loaded and
processes can migrate to the new code.

» Ability to detect processes running old code.

* Design the standard design patterns (part of OTP) so that they
can:

— convert data to a new format if needed (e.g. when loading new
code)

— “hand over” to other processes in other processors when ordered
to do so
« Application software needs to be aware of possible software
updating and failure recovery, but with Erlang/OTP support the
B impact is minimised.

ACM Uppsala 20030829 Ericsson AB 14 Mike Williams



\

ERICSSON 2
[

Problem Domain - Ease of programming
(reminder)

e Highly "expressive" programming language
e Easy portability between processor architectures

e Large scale development (tens or even hundreds of
programmers)

* Incremental and exploratory programming

e Debugging and tracing - even in systems running at
customer sites

o Easy to fix bugs (patches) and upgrade at all phases of
design — even in systems running at customer sites

ACM Uppsala 20030829 Ericsson AB 15 Mike Williams



ERICSSON Z
T

Problem Domain - Ease of programming
Design Decisions:

* Use high level functional language with automatic memory
handling and garbage collection

» Use execution of intermediate code by virtual machine to
obtain easy portability between processor architectures

e Simple non/hierarchical module system

« Erlang shell allows testing of functions directly without any
special test programs

 Virtual machine support for debugging and fault tracing

 Dynamic code replacement also very useful while
g developing / testing software

ACM Uppsala 20030829 Ericsson AB 16 Mike Williams



\

ERICSSON 2
[

Comments

 We have frightened off a lot of people by using:
— A functional language
— A non O-O language
— A non “C” like syntax
— Recursion, single assignment etc
— A virtual machine

* |.e. we have diverged a long way from industry
mainstream. We are changing very many parameters at
the same time.

— Attitude changes in “mainstream” are possible

« Remember what people said about Garbage Collection before
Java?

« Remember what people said about virtual machines before
H Java (UCSD Pascal ©)

ACM Uppsala 20030829 Ericsson AB 17 Mike Williams



\

ERICSSON 2
[

Comments

 The existing Armstong et al book is out of date!

— The only “complete” book about Erlang and OTP which is available
today is in French!

— | have written a reasonably complete tutorial about Erlang
— A complete Erlang Spec is available in the latest distribution

 The use of Erlang is accelerating, the
critical mass Is about to be reached!

ACM Uppsala 20030829 Ericsson AB 18 Mike Williams



\

ERICSSON 2
[

ACM Uppsala 20030829 Ericsson AB 19 Mike Williams



