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Maybe it didn’t happen exactly this way, but
this is the way | think it should have
happened.
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Problem Domain - Highly concurrent and
distributed systems

e Thousands of simultaneous transactions

— Light weight transactions

— Greatest CPU load is implementing concurrency and
communication not computation

« Many computers
— different types (Bigendians, Littleendians, Intel, Sparc, PowerPC
etc)

— share nothing (no shared memory, different communication
mechanisms (Ethernet, ATM, Proprietary))

e Many OS’s

. Solaris, VxWorks, Windows, pSOS, Linux, etc
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Problem Domain - No down time

* Not allowed to have any planned or unplanned downtime

— Acceptance criterion: five nines = 99.999% uptime or 5 minutes
down time per year

 Recovery from software errors
— Large systems will have software bugs

 Recovery from hardware failure
— Network failure, processor failure, I/O failure

 Enable adding / deleting computers and other hardware at
run time

Update code in running systems
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Problem Domain - Ease of programming

e Highly "expressive" programming language
e Easy portability between processor architectures

e Large scale development (tens or even hundreds of
programmers)

* Incremental and exploratory programming

e Debugging and tracing - even in systems running at
customer sites

o Easy to fix bugs (patches) and upgrade at all phases of
design — even in systems running at customer sites
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Solution Domain - Concurrency

* No existing industry quality OS or language offers light
weight enough threads / processes

* Processes must be independent

— No shared resources
— One process must not be able to destroy another process

— Reduce event/state matrix by selective message reception
H
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Solution Domain — Concurrency & Distribution

e As we didn’'t want to modify or create and new OS,
Implementation of light weight, processes needed to be
done in “middleware”, l.e. on top of the OS.

« Making processes independent requires either control of
the MMU or a language without pointers (or with safe
pointers)

e Reducing the event/state matrix makes the signal / state
model undesirable.

— The signal state model requires a thread only suspending at the
top level, not in a function/subroutine. This makes proper RPC’s
H Impossible.
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Solution Domain — Concurrency & Distribution:
Design decisions

* Implement concurrency in a virtual machine on top of
operating system.

« Use a language without explicit pointers.

e Use copying message passing as only interprocess
communication mechanism.

* Implement selective message reception.

« Make communication between processes on different
machines identical to communication between processes
on same machine.

— Type information retained at runtime enables automatic conversion

= of Erlang terms to an external format.
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Solution Domain - No down time

* Principle for error detection: It is unsafe to allow the failing
part of the system to detect and correct failures itself

No ability to crash
The observer

Failure
detection Observer

&
Failure handler

Failing part of
the system Failure

Handling
(restart etc)
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Solution Domain - No down time

* A software error in one process is best detected in another
process

« Failure of one processor is best detected in another
processor

* Frequently we want to be able to abort all the processes in

a transaction If one of them fails for some reason
u
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Solution Domain - No down time
Design Decisions:

e Create a concept of a “link” between processes. If a
process fails, a special message (a signal) is sent to all the
processes to which it has links.

e Default action of a process receiving a signal indicating
failure of a process is to “die” and re-send on the signal to
all linked processes.

e By setting a special flag, (trap_exit) a processor can
override the default behaviour and receive the signal as an
ordinary message.

* Links are bi-directional — (maybe a design mistake?)
|
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Solution Domain - No down time
Design Decisions:

e TWO cases:

— Server with a lot of clients. If a client fails server needs to take
corrective action.

— A lot of processes in a transaction — if one fails, all should fail.

Link and Signal mechanism works across processor

boundaries.

— |If a processor fails, signals will be sent to all processes which have
links to processes in the failing processor.

Error handling philosophy: “Let it crash” and let other

m processes clear up the mess.
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Solution Domain - No down time

« Common design paradigm:

— Let all active transactions be represented by groups of linked
processes

— Store Inactive (steady state) transactions in replicated robust
database (Mnesia)

— Let resources needed by transactions be allocated by resource
allocator processes which trap_exits and free up resources from
failing transactions

— Supervisor processes which trap_exits restart failing application on
suitable processors. Data for these applications is the configuration
data needed and the data for transactions in a steady state. (same

n mechanism used for replacing processors).
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Solution Domain - No down time
Design Decisions:

e Design the virtual machine so new code can be loaded and
processes can migrate to the new code.

» Ability to detect processes running old code.

* Design the standard design patterns (part of OTP) so that they
can:

— convert data to a new format if needed (e.g. when loading new
code)

— “hand over” to other processes in other processors when ordered
to do so
« Application software needs to be aware of possible software
updating and failure recovery, but with Erlang/OTP support the
B impact is minimised.
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Problem Domain - Ease of programming
(reminder)

e Highly "expressive" programming language
e Easy portability between processor architectures

e Large scale development (tens or even hundreds of
programmers)

* Incremental and exploratory programming

e Debugging and tracing - even in systems running at
customer sites

o Easy to fix bugs (patches) and upgrade at all phases of
design — even in systems running at customer sites

ACM Uppsala 20030829 Ericsson AB 15 Mike Williams



ERICSSON Z
T

Problem Domain - Ease of programming
Design Decisions:

* Use high level functional language with automatic memory
handling and garbage collection

» Use execution of intermediate code by virtual machine to
obtain easy portability between processor architectures

e Simple non/hierarchical module system

« Erlang shell allows testing of functions directly without any
special test programs

 Virtual machine support for debugging and fault tracing

 Dynamic code replacement also very useful while
g developing / testing software
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Comments

 We have frightened off a lot of people by using:
— A functional language
— A non O-O language
— A non “C” like syntax
— Recursion, single assignment etc
— A virtual machine

* |.e. we have diverged a long way from industry
mainstream. We are changing very many parameters at
the same time.

— Attitude changes in “mainstream” are possible

« Remember what people said about Garbage Collection before
Java?

« Remember what people said about virtual machines before
H Java (UCSD Pascal ©)
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Comments

 The existing Armstong et al book is out of date!

— The only “complete” book about Erlang and OTP which is available
today is in French!

— | have written a reasonably complete tutorial about Erlang
— A complete Erlang Spec is available in the latest distribution

 The use of Erlang is accelerating, the
critical mass Is about to be reached!
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