
ACM Uppsala 20030829 Mike WilliamsEricsson AB 1

Why did we create Erlang?

Mike Williams
Ericsson AB
Stockholm
Sweden

mike@erix.ericsson.se

ACM Uppsala 20030829 Mike WilliamsEricsson AB 2

Maybe it didn’t happen exactly this way, but
this is the way I think it should have

happened.

☺

ACM Uppsala 20030829 Mike WilliamsEricsson AB 3

Problem Domain - Highly concurrent and
distributed systems

• Thousands of simultaneous transactions
– Light weight transactions
– Greatest CPU load is implementing concurrency and

communication not computation

• Many computers
– different types (Bigendians, Littleendians, Intel, Sparc, PowerPC

etc)
– share nothing (no shared memory, different communication

mechanisms (Ethernet, ATM, Proprietary))

• Many OS’s
– Solaris, VxWorks, Windows, pSOS, Linux, etc

ACM Uppsala 20030829 Mike WilliamsEricsson AB 4

Problem Domain - No down time

• Not allowed to have any planned or unplanned downtime
– Acceptance criterion: five nines = 99.999% uptime or 5 minutes

down time per year

• Recovery from software errors
– Large systems will have software bugs

• Recovery from hardware failure
– Network failure, processor failure, I/O failure

• Enable adding / deleting computers and other hardware at
run time

• Update code in running systems

ACM Uppsala 20030829 Mike WilliamsEricsson AB 5

Problem Domain - Ease of programming

• Highly "expressive" programming language
• Easy portability between processor architectures
• Large scale development (tens or even hundreds of

programmers)
• Incremental and exploratory programming
• Debugging and tracing - even in systems running at

customer sites
• Easy to fix bugs (patches) and upgrade at all phases of

design – even in systems running at customer sites

ACM Uppsala 20030829 Mike WilliamsEricsson AB 6

Solution Domain - Concurrency

• No existing industry quality OS or language offers light
weight enough threads / processes

• Processes must be independent
– No shared resources
– One process must not be able to destroy another process
– Reduce event/state matrix by selective message reception

ACM Uppsala 20030829 Mike WilliamsEricsson AB 7

Solution Domain – Concurrency & Distribution

• As we didn’t want to modify or create and new OS,
implementation of light weight, processes needed to be
done in “middleware”, I.e. on top of the OS.

• Making processes independent requires either control of
the MMU or a language without pointers (or with safe
pointers)

• Reducing the event/state matrix makes the signal / state
model undesirable.
– The signal state model requires a thread only suspending at the

top level, not in a function/subroutine. This makes proper RPC’s
impossible.

ACM Uppsala 20030829 Mike WilliamsEricsson AB 8

Solution Domain – Concurrency & Distribution:
Design decisions

• Implement concurrency in a virtual machine on top of
operating system.

• Use a language without explicit pointers.
• Use copying message passing as only interprocess

communication mechanism.
• Implement selective message reception.
• Make communication between processes on different

machines identical to communication between processes
on same machine.
– Type information retained at runtime enables automatic conversion

of Erlang terms to an external format.

ACM Uppsala 20030829 Mike WilliamsEricsson AB 9

Solution Domain - No down time

• Principle for error detection: It is unsafe to allow the failing
part of the system to detect and correct failures itself

Failing part of
the system

Observer
&

Failure handler

No ability to crash
The observer

Failure
detection

Failure
Handling
(restart etc)

ACM Uppsala 20030829 Mike WilliamsEricsson AB 10

Solution Domain - No down time

• A software error in one process is best detected in another
process

• Failure of one processor is best detected in another
processor

• Frequently we want to be able to abort all the processes in
a transaction if one of them fails for some reason

ACM Uppsala 20030829 Mike WilliamsEricsson AB 11

Solution Domain - No down time
Design Decisions:

• Create a concept of a “link” between processes. If a
process fails, a special message (a signal) is sent to all the
processes to which it has links.

• Default action of a process receiving a signal indicating
failure of a process is to “die” and re-send on the signal to
all linked processes.

• By setting a special flag, (trap_exit) a processor can
override the default behaviour and receive the signal as an
ordinary message.

• Links are bi-directional – (maybe a design mistake?)

ACM Uppsala 20030829 Mike WilliamsEricsson AB 12

Solution Domain - No down time
Design Decisions:

• Two cases:
– Server with a lot of clients. If a client fails server needs to take

corrective action.
– A lot of processes in a transaction – if one fails, all should fail.

• Link and Signal mechanism works across processor
boundaries.
– If a processor fails, signals will be sent to all processes which have

links to processes in the failing processor.

• Error handling philosophy: “Let it crash” and let other
processes clear up the mess.

ACM Uppsala 20030829 Mike WilliamsEricsson AB 13

Solution Domain - No down time

• Common design paradigm:
– Let all active transactions be represented by groups of linked

processes
– Store inactive (steady state) transactions in replicated robust

database (Mnesia)
– Let resources needed by transactions be allocated by resource

allocator processes which trap_exits and free up resources from
failing transactions

– Supervisor processes which trap_exits restart failing application on
suitable processors. Data for these applications is the configuration
data needed and the data for transactions in a steady state. (same
mechanism used for replacing processors).

ACM Uppsala 20030829 Mike WilliamsEricsson AB 14

Solution Domain - No down time
Design Decisions:
• Design the virtual machine so new code can be loaded and

processes can migrate to the new code.
• Ability to detect processes running old code.
• Design the standard design patterns (part of OTP) so that they

can:
– convert data to a new format if needed (e.g. when loading new

code)
– “hand over” to other processes in other processors when ordered

to do so

• Application software needs to be aware of possible software
updating and failure recovery, but with Erlang/OTP support the
impact is minimised.

ACM Uppsala 20030829 Mike WilliamsEricsson AB 15

Problem Domain - Ease of programming
(reminder)

• Highly "expressive" programming language
• Easy portability between processor architectures
• Large scale development (tens or even hundreds of

programmers)
• Incremental and exploratory programming
• Debugging and tracing - even in systems running at

customer sites
• Easy to fix bugs (patches) and upgrade at all phases of

design – even in systems running at customer sites

ACM Uppsala 20030829 Mike WilliamsEricsson AB 16

Problem Domain - Ease of programming
Design Decisions:

• Use high level functional language with automatic memory
handling and garbage collection

• Use execution of intermediate code by virtual machine to
obtain easy portability between processor architectures

• Simple non/hierarchical module system
• Erlang shell allows testing of functions directly without any

special test programs
• Virtual machine support for debugging and fault tracing
• Dynamic code replacement also very useful while

developing / testing software

ACM Uppsala 20030829 Mike WilliamsEricsson AB 17

Comments
• We have frightened off a lot of people by using:

– A functional language
– A non O-O language
– A non “C” like syntax
– Recursion, single assignment etc
– A virtual machine

• I.e. we have diverged a long way from industry
mainstream. We are changing very many parameters at
the same time.
– Attitude changes in “mainstream” are possible

• Remember what people said about Garbage Collection before
Java?

• Remember what people said about virtual machines before
Java (UCSD Pascal ☺)

ACM Uppsala 20030829 Mike WilliamsEricsson AB 18

Comments

• The existing Armstong et al book is out of date!
– The only “complete” book about Erlang and OTP which is available

today is in French!
– I have written a reasonably complete tutorial about Erlang
– A complete Erlang Spec is available in the latest distribution

• The use of Erlang is accelerating, the
critical mass is about to be reached!

ACM Uppsala 20030829 Mike WilliamsEricsson AB 19

