Parameterized modules in Erlang

Richard Carlsson
Information Technology Department, Uppsala University, Sweden

richardc@csd.uu.se

ABSTRACT

This paper describes how the Erlang programming language
could be extended with parameterized modules, in a way
that is compatible with existing code. This provides a pow-
erful way of creating callbacks, that avoids the limitations
involved with function closures, and extends current pro-
gramming practices in a systematic way that also eliminates
a common source of errors. The usage of parameterized
modules is similar to Object-Oriented programming, and
is naturally complemented by the currently underused fea-
ture of behaviours (interface declarations), which are also
explained in detail.

1. INTRODUCTION
1.1 The Erlang language

The ERLANG [1] programming language is a strict, dy-
namically typed functional language without destructive up-
dates. It has built-in support for concurrency through pro-
cesses, which communicate by asynchronous message pass-
ing. The unit of compilation is a module, where each module
is uniquely named and contains a number of functions, such
that only those functions explicitly marked as exported can
be accessed from other modules. A feature known as “dy-
namic code replacement” allows a new version of a module
to be loaded at any time. ERLANG is mainly used for writ-
ing complicated control applications with a high degree of
parallellism, such as telecommunication switching software.
Some of these applications are very large, ranging from a
couple of hundred thousand up to 1.5 million lines of code.
Yet, apart from the module system, the language in itself
has no particular features that assist the structuring of large
applications.

1.2 Motivation

Suppose that a service (e.g., a server of some kind), which
is implemented by some module B, is called from another
module A. The interface of B allows A to specify the name of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Erlang Workshop '029/08/2003, Uppsala, Sweden
Copyright 2003 ACM 1-58113-772-9/03/083%5.00.

<
\

" callback

Figure 1: Callback module usage

a callback module C to be called from B for handling certain
tasks, as shown in Figure 1. This is a form of parameter-
ization of the behaviour of B, and is a common idiom in
ERLANG programs. The module C must then provide a set
of functions (one or more) with specific names and arities,
as described in the documentation of B. This set of func-
tions is referred to as the interface of the callback module,
as expected by B. (A callback module could implement any
number of additional functions as long as it implements all
the expected interface functions.)

In this style of programming, it often happens that there
is a need for A to pass additional information to the callback
module C (cf. Figure 1), beyond that which is passed directly
from B to C as specified by the callback interface. There are
some different ways to handle this:

e If there are only very few variations of C, and the data
is known at compile time, it may be possible to create
different versions Ci, Co, ..., either by hand, or auto-
matically using some form of source code templates or
code generation tools. Then A can pass a suitable name
C; depending on the desired behaviour. This method
is obviously very limited, and cannot be generalized.

e A tempting solution is to put the additional informa-
tion in some named location where it can be accessed
by both A and C —i.e., in some form of global variable.
(Some real-world examples found in ERLANG programs
are the process dictionaries, ets-tables, and files.) It is
however universally agreed that arbitrary use of global
variables is bad programming practice.

e In some cases, the author of B has foreseen this need,
and has included an extra parameter in the interfaces
from A to B, and from B to C, so that B is given the
extra information (often referred to as “user data”) by
A and includes it in the calls to C. In this case, B never

inspects or modifies the data, which has no effect on
the functionality of B itself. It is therefore unfortunate
that it should clutter the interfaces of B and C in this
arbitrary and irrelevant way, and furthermore affect
the implementation details of B.

e If only a single callback function is ever called from B,
then if the implementation used a function closure (or
“fun”) instead of naming a callback module, the prob-
lem would be solved, since a closure can carry its own
“extra information” — the values of its free variables at
the time of its instantiation. However, if a later version
of B could want to call more than one callback func-
tion (and the functions are logically related), using a
single callback module allows the interface to evolve
over time.

Other problems with using function closures for anything
except local and short-term purposes are posed by the code
replacement mechanism and the transparent network distri-
bution of ERLANG. For example, if B is given a function clo-
sure for use as a callback whenever the need arises, and holds
on to this for a longer period, it is possible that meanwhile,
the module containing the code for the closure is replaced,
which could render the closure unusable. Furthermore, if
a closure is passed across the network to another ERLANG
node, the same version of the module that contains the clo-
sure’s code must exist on both nodes. If the version on the
remote node is older (or newer), the closure cannot be used.
In contrast, when a function is being called by name (giving
both the name of the module and the function), the latest
loaded version of the module is always used.

(It should also be mentioned that for historical reasons,
ERLANG still supports a form of by-name, pseudo-functional
values consisting of pairs {M, F} of atoms M and F naming
the module and function to be called. There is no way to
pass “extra information”. The only advantage of these today
are that they do not suffer from the code change problem.)

To solve the above problems, we suggest a new language
feature: parameterized modules.

2. PARAMETERIZED MODULES

A parameterized, or abstract module, is a module with
free variables, much like a lambda expression (or “fun ex-
pression”). A lambda expression evaluates to a closure,
which is a functional value and can be applied like any func-
tion. Similarly, an abstract module can be instantiated to
yield a module instance, which can be used in a qualified
function call just like any module name.

2.1 Defining a parameterized module

In order to allow us to declare an abstract module, we
extend the module declaration syntax so that we may specify
a list of variables, as follows:

-module(name, [Vi, S Va1

This will make the variables Vi, ..., V, available over all
functions in the module, i.e., the scope of their declaration is
the whole module. There are no restrictions whatsoever on
what kind of values the variables may hold — in particular,

'The interaction between anonymous function closures and
code versioning is a complicated and interesting matter, but
lies outside the scope of this paper.

a variable may be bound to an instance of another abstract
module, as we will see later.

2.2 Creating a module instance

Just like a lambda expression becomes instantiated to a
“fun-value” (function closure), we need to be able to in-
stantiate abstract modules. For this purpose, the compiler
automatically creates a function named new/n in each ab-
stract module, where n is the number of variables in the
module declaration. Thus, to create a module instance M,
we call the corresponding new function:

M = name:new(A1, ..., An)

where name is the name of the abstract module, and A4, ...,
A,, are the actual parameter values to be bound to the formal
parameters Vi, ..., V,. It is important to note that except
for new/n and the standard functions module_info/1 and
module_info/2,> no other functions in an abstract module
may be called directly by the module name alone.

The representation of the value M is not defined here. Ide-
ally, a new built-in opaque datatype module should be added
to the ERLANG language for representing module instances.

2.3 Calling a function in an abstract module

If an instance M of an abstract module has been created as
described above, that value can be used in a function call,
just as if it was the name of an ordinary module:

M:f; (A, .5 Ag,)

K

where k; is the arity of the i:th function f; exported by the
abstract module, and Ai, ..., A, are the arguments. This
is done by extending the functionality of the : operator to
accept both atoms (module names) and module instances as
the left-hand side operand. The built-in functions apply/3,
spawn/3, etc., are similarly extended.

Note that this allows existing code to use abstract module
instances without modification: where previously an atom
(a module name) was expected as a reference to a callback
module, as in e.g. the standard library gen_server module,
a module instance could be passed instead.

As mentioned previously, when a function is called by ex-
plicitly specifying the target module, using the : operator,
the semantics of ERLANG dictate that the latest loaded ver-
sion of the code for that module is used (in other words,
the binding is done at the time of the call). This property
should hold also when calling instances of abstract modules,
i.e., the latest version of the abstract module is always used.
This way, abstract modules may be used where function clo-
sures are not suitable.

2.4 A simple example

Figure 2 shows the code for two modules main and print,
where print is parameterized with respect to the variable
Name. The function main:start/0 creates two instances of
print and calls the function message/1 for both instances.
The resulting output is:

Humpty: ’Hello!’
Dumpty: ’Hil!’

2In an Object-Oriented language, these would be called the
static functions.

% File: main.erl

-module (main) .

-export([start/0]).

start() ->
M1 = print:new("Humpty"),
M2 = print:new("Dumpty"),
M1:message("Hello!"),
M2:message("Hi!"),
ok.

% File: print.erl

-module(print, [Name]).

-export ([message/1]) .

message (Text) ->
io:fwrite(""s:
ok.

’~g’" [Name, Text]),

Figure 2: A simple example

In other words, whenever the instance M1 is called, the value
"Humpty" is used for Name, and whenever M2 is called, the
value "Dumpty" is used.

2.5 Generic server example

Figure 3 shows the implementation of a “generic server”
module server, parameterized with respect to the variables
Name and Mod. The function start/1 starts a server pro-
cess for a particular instance of server, returning the new
process identifier. The server registers itself under the given
name (an atom), and also includes the name in each reply
to any received request. The argument to start/1 is passed
to the init/1 function of the callback module to produce
the initial state.

The callback module must implement at least the three
functions init/1, handle/2, and cleanup/1. The first takes
the data given to the start/1 function and produces the
initial server state; the handle/2 function takes a request
and the current state and produces a result and a new state,
and the cleanup/1 function takes the final state and handles
any necessary cleanup before the server process terminates.

Note that as the server is implemented, the callback mod-
ule Mod can be either an atom, naming an ordinary mod-
ule, or an instance of an abstract module — the code for
the server itself does not depend on this. Furthermore, the
server code is very clean, since the Mod variable does not
need to be passed around explicitly as an extra parameter,
or hidden as a component of the state value. Also note that
to start the server, as in:

Process = Server:start(...)

it is not necessary to know anything about the values of the
Name and Mod parameters — these are only needed when the
server module instance is created, which could occur at a
completely different point in the program, as in:

Server = server:new(my_server, CallbackModule)

Figure 4 shows a possible implementation of a callback
module (named callback) for such a generic server. It
provides the necessary functions, which implement a sim-
ple counter with the operations inc(N), dec(N), reset, and
read. The three first operations modify the counter value
and return ok, while the last returns the current value with-

% File: server.erl
-module(server, [Name, Mod]).
-export([start/1]).

start (Arg) ->
spawn(fun () -> init(Arg) end).

init(Arg) ->
register (Name, self()),
loop(Mod:init (Arg)).

loop(State) ->
receive
{request, Sender, R} ->
{A, Statel} = Mod:handle(R, State),
Sender ! {reply, Name, A}
loop(Statel);
halt ->
Mod:cleanup (State),
ok
end.

Figure 3: A generic server

out changing it. The init/1 function simply sets the initial
counter value, and the cleanup function does not have to do
anything.

To make things more interesting, the callback module
is also parameterized with respect to a module Log, which
must provide a function event/1, and is used for keeping
a log over the sequence of received requests. We simply
assume that there is an implementation of such a logger
available in a module named log.

To create a callback instance, we thus do the following:

CallbackModule = callback:new(log)

The value CallbackModule is then passed to server:new/2
as described above to create an instance of the server mod-
ule, which in its turn is used to actually start the server
process.

What happens now is that the log module will be called
upon each received request, but the client who issues the
requests to the server does not specify this in any way. Fur-
thermore, the server code does not pass any explicit “extra
information” to the callback module, and the name of the
logger is not hidden in the server state or in any global vari-
able. Nor is the code for the callback module cluttered by
code for digging out the logger module reference from the
state parameter, or from any other location: the only traces
are the declaration of the Log variable in the module header,
and the uses of Log in the code.

2.6 A source of errors eliminated

In current ERLANG programs that reference callbacks by
name, it is in general impossible to automatically detect if
a particular atom or string literal in the source code will be
used as the name M of a module in a call M:£(...). As a
consequence, the set of modules called by a program can-
not be exactly determined by debugging tools. Sometimes,
module names are even constructed at run time by string
operations. This makes debugging of such applications very
difficult. If a module name has been misspelt, or the target

% File: callback.erl
-module(callback, [Logl).
-export([init/1, handle/2, cleanup/1]).

init(Value) ->
Log:event ({init, Valuel}),
Value.

handle({inc, N}, Value) ->
Log:event ({inc, N}),
{ok, Value + N};
handle({dec, N}, Value) —>
Log:event ({dec, N}),
{ok, Value - N};
handle(reset, _Value) ->
Log:event(reset),
{ok, 0};
handle(read, Value) ->
Log:event(read),
{Value, Value}.

cleanup(Value) ->
Log:event ({stopped, Value}),
ok.

Figure 4: A callback implementation

module has been renamed but the code not updated to re-
flect this, the result will be a run-time error when the name
is eventually used in a call.

By replacing all such so-called meta-calls with calls to
abstract modules, for example by changing

Module = foobar
to
Module = foobar:new()

we can make sure that all references to modules by name
are detectable as such (because of the context), and so can
be found by automatic tools.

3. THERELATIONTO OBJECT-ORIENTED
PROGRAMMING

In Object-Oriented Programming [2, 4, 7], an object is a
piece of data, associated with a number of operations on that
data. Depending on the programming language involved,
there may be different facilities available for creating this
association, but in general, the following holds:

e Each object belongs to a class, such that all objects of
the same class have the exact same set of data fields
and associated operations.

e A class definition describes both the individual data
fields and the implementations of the operations (or
methods), that every object belonging to the class will
have.

e A new object is created by instantiating the class; usu-
ally by calling a constructor method, passing values to
be used at object creation time. When an object is
no longer needed, a corresponding destructor method

is often called to perform any necessary cleanup oper-
ations before the object can be completely discarded.
(Constructor and destructor methods are often auto-
matically generated by the compiler.)

e Each created object instance has a distinct identity;
even if two objects are of the same class, and were
created by calling the same constructor methods with
identical arguments, they remain separate objects.

e The data fields of a particular object instance consti-
tute the state of the object. While in some languages
fields can be declared as constant, and then cannot be
changed after object instantiation, in the general case
all objects have modifiable state.

e When a method is called, apart from its normal ar-
guments it must also be told which object instance to
operate on. This mechanism is typically hidden by the
language, but in effect, the object reference is passed
to the method as an extra argument. For example,
the syntax myObject.print(x) may be rewritten in-
ternally to code resembling print (x, myObject). The
extra “invisible” parameter to such methods is usually
referred to as the this reference.

e Usually, inheritance is also supported by the language,
so that a newly created class can be declared as an
extension of a previously existing class, by adding new
data fields and functions, or new implementations of
existing functions. Objects belonging to the new class
automatically belong also to the previous class (the
superclass), and recursively, to all of its superclasses.
When a method is called, the nearest implementation
in the hierarchy is used, overriding those higher up.

It is easy to see that an abstract module is very similar
to a class. Both are instantiated to yield values that are
used for calling functions (methods). Also, both need to
pass a this reference, as we shall see in the following section.
However, there are some important differences:

e A module instance has no modifiable state. Although
an abstract module can have “accessor functions” that
return the values of the module parameters, these val-
ues cannot be changed once instantiated.

e Instances of abstract modules do not have identity.
Two instances created using the same constructor (the
new(...) function) and arguments are equivalent.

e In an Object-Oriented language, the arguments passed
to the constructor functions are typically not immedi-
ately available over the whole class definition, but only
within the constructor method. It is the responsibility
of the programmer to write code that explicitly trans-
fers the arguments to data fields (which may then be
accessed by the other methods) when the constructor
is executed. The constructor code may also perform
other initialization tasks that are executed for each
new object instance.

In contrast, when an abstract module is instantiated, there
is no programmer-specified initialization to be performed,
and no need to write explicit constructor code. Further-
more, since there is no state, and no identity, there is no
need for destructor functions.

Finally, we note that the issue of inheritance is orthogonal
to the topic of this paper, and we will not pursue the mat-
ter further here, except remark that inheritance could most
probably also be added to the ERLANG language, if desired.

4. THE ‘THIS' REFERENCE

When a function is called through a module instance M,
the code must be able to access the values that were given
to the constructor function new(...) when M was created.
Obviously, these values must be somehow embedded in M,
but they also need to be transfered to the called function.
(This is exactly the same issue as with the values of the free
variables in function closures.) There are two main ways of
doing this:

e Each value can be extracted from M before the call
and be passed separately as an extra parameter to the
function. (This is known as “closure conversion”.)

e A reference to M itself can be passed to the function as a
single extra parameter. The values are then extracted
from M as needed, in the code of the called function.
An important advantage of this method is that the
function will always implicitly have access to the value
M itself, which often turns out to be useful.

The latter method is also the one used in Object-Oriented
languages, as previously described. By convention, the pro-
grammer can usually access the reference directly by the
name this.

In Erlang, it would not only be convenient to be able to
access the “this” reference, but actually necessary, in order
to support dynamic code replacement. To give an example,
in the “generic server” example in Figure 3, each time after
a request has been handled, a tail-recursive® call to loop is
executed, in order to handle further requests. Since this call
is not qualified with the module name (i.e., it is a “local”
call), it will not be redirected when a new version of server
is loaded.

This is usually not acceptable, since a server process may
run for a very long time, and it should be possible to update
the code without restarting the process. Therefore, such
loops are typically implemented by writing the tail-recursive
call as a fully qualified call, as in server:loop(Statel). But
in our example, this is not possible, because server is an
abstract module, and the only function which can be called
directly is server:new(...).

Thus we see that in order to support dynamic code re-
placement in our server implementation, we need to be able
to use the “this” reference. Adopting the convention that
in every function of an abstract module, the variable THIS
is always implicitly bound to the current module instance,
we can write the tail recursive call as THIS:loop(Statel).

5. ABSTRACT MODULES AND ERLANG
BEHAVIOURS

A “behaviour” is the name in the ERLANG community for
what is otherwise more commonly known as an “interface”,
e.g. in Java [5]. Behaviour declarations are also currently
the only constructs that are statically type-checked by the
ERLANG compiler.

3Last call optimization is a required feature of ERLANG im-
plementations.

5.1 How behaviours work

A module is declared as implementing a particular be-
haviour B by adding the declaration -behaviour(B). The
definition of the behaviour B is found by executing the func-
tion call B:behaviour_info(callbacks), which returns a
list of function names (represented as 2-tuples). For exam-
ple, the standard library behaviour application is defined
by the following code:*

-module (application).
-export([..., behaviour_info/1, ...]).

behaviour_info(callbacks) ->
[{start,2},{stop,1}].

i.e., a module declared with -behaviour (application) must
define the two functions start/2 and stop/1.

The compiler checks that the module which contains the
declaration also defines the corresponding functions, and
issues a warning otherwise. Thus, the behaviour-defining
module B must be available in the system for this check to
be performed. (However, it is not a compile-time error if B
is not present, or the check fails in any other way; thus a
module can always be compiled independently of any other
modules, if necessary, for example during bootstrapping.)
Currently, the compiler also warns if a module contains more
than one behaviour declaration, but there is no real reason
for this, except that behaviours are still being regarded as
something of an “advanced feature”.

5.2 The Behaviour behaviour

It can be immediately noted that the act of defining a be-
haviour is in itself a recurring pattern, and could be defined
as follows:

-module (behaviour) .
-behaviour (behaviour) .
-export ([behaviour_info/1]) .

behaviour_info(callbacks) ->
[{behaviour_info,1}].

All behaviour-defining modules, such as application above,
and even the module behaviour itself, as shown, could then
include the declaration -behaviour (behaviour).

5.3 Abstract modules and behaviours

Today, the use of callback modules (by name) is relatively
common in ERLANG programs, but is perceived as a rather
advanced programming trick. With abstract modules, it
becomes more natural to use such “plug-ins”, both because
one can easily define a variable over a whole module (no
need to explicitly pass extra parameters for the callbacks),
and because the problem of passing “additional information”
along with the callback is solved in a transparent way.

However, this also means that there will be an increased
need to specify the requirements on a particular plug-in in
a more formal way. The most basic specification is of course
the interface, i.e., the “behaviour”.

Looking back at our “generic server” example, the module
callback in Figure 4 uses a logger module which is expected

4Tt is not uncommon that a behaviour-defining module also
contains other exported functions, and thus serves as both
a definition and a working component.

to contain a function event/1. This simple behaviour could
be defined as follows:

-module (logger) .
-behaviour (behaviour) .
-export ([behaviour_info/1]) .

behaviour_info(callbacks) ->
[{event,1}].

The documentation of the callback module could then spec-
ify that the module parameter Log must implement the
logger interface. This will provide the author of such a
logger module with a way to automatically check that his
code at least implements all the required functions. We can
expect that if abstract modules are introduced in ERLANG,
the number of such mini-behaviours will grow quite large,
so that any medium-sized application will typically define a
number of behaviours for its internal use, and a few more
for interoperability with other programs.®

Obviously, the checking of behaviour declarations is quite
limited. Because ERLANG has no static typing, it is not
possible to specify the types of the function parameters in
a behaviour and have these automatically checked. Nor is
it possible to declare that the type of a particular module
parameter M is “module that implements behaviour B” and
have the compiler check that M is only used to call functions
defined in B. However, to get the assurance that one has
remembered to implement all the necessary functions when
creating a callback module is a very good start.

5.4 Behaviour of an abstract module

Of course, we want to be able to use behaviour decla-
rations also in abstract modules. This requires no extra
machinery. Looking at Figure 3, the server module is pa-
rameterized with respect to a callback module Mod. The
expected interface of Mod could be specified as:

-module(server_callback) .
-behaviour (behaviour) .
-export ([behaviour_info/1]) .

behaviour_info(callbacks) ->
[{init,1},{handle,2},{cleanup,1}].
We could then add the declaration:
-behaviour (server_callback)
to the module callback in Figure 4, like this:

% File: callback.erl

-module(callback, [Log]).

-behaviour (server_callback) .
-export([init/1, handle/2, cleanup/1]).

init(Value) -> ..
handle(Regest, Value) -> ...

cleanup(Value) -> ...

The fact that callback is an abstract module (with param-
eter Log) does not affect the check for functions init/1,
handle/2, and cleanup/1.

°In comparison, the current Erlang/OTP distribution, con-
taining more than a thousand modules, defines a total of 6
behaviours.

6. RAVIOLI CODE WARNING

In the Object Oriented Programming world, “ravioli code”
is what you get when you have factored your program into
too many small chunks of code, so that it becomes impos-
sible to keep track of where the actual work is being done.
(It’s “all in the sauce”, which of course is hard to get a good
grip of.) With abstract modules, these kinds of programs be-
come possible also in ERLANG. In the worst case, a program
could start with instantiating hundreds of abstract modules,
finally creating an “application” module instance M and call-
ing M:start/0, and it could then take weeks to understand
(even for the original author) which parts of the code are
actually being called, from where, and at what time.

This kind of overuse of parameterizing modules should be
avoided. The strategy to be used mainly depends on the
programming problem: some problems map easily onto a
set of functions without any real need for parameterizing
the module itself — in those cases, the temptation to create
an abstract module should be resisted. In other cases, pa-
rameterizing the module solves the problem in a very elegant
manner. Use abstraction with discretion.

7. RELATED WORK

Module systems come in many different forms and flavours.
A module system usually serves several purposes, such as
code organization, separate compilation, abstraction (by hid-
ing implementation details), code reuse (by creating suit-
ably abstract components), and name space separation.® In
Object-Oriented languages, modules are typically identified
with classes [8, 5]. In others, such as Ada [9] or ML [10], a
module (or package) is any collection of programming lan-
guage entities. In some systems, modules can be nested.

If the language is statically typed and supports separate
compilation, the compiler must be able to typecheck the uses
of other modules when a single module is being compiled.
This can be done by consulting the actual source code of the
referenced modules, or by using interface files that contain
only the interface specifications and can be delivered sepa-
rately from the source code. (In some cases, the compiled
object code contains all necessary interface information, e.g.
in Java [5].) In some systems, the static typechecking does
not allow mutually recursive dependencies between modules.

Parameterized modules are also known as generic mod-
ules. In Standard ML [10], parameterized modules are called
functors. (In mathematics, a functor is a mapping from one
category to another, or sometimes any function that oper-
ates on other functions.)” Module systems that allow ab-
straction with respect to module references are sometimes
called higher-order. A higher-order functor is a functor
whose components may themselves be functors, allowing for
example partial instantiation of a functor. This is usually
not possible in statically typed systems like Standard ML.

Some languages do not allow abstract modules to be in-
stantiated at run-time, but only at compile-time or link-
time, as in Ada [9] or Modula-3 [3]. In these cases, abstract
modules are more like templates, as found in C++ [11], cre-
ating one separate, slightly different copy of the code for
each instance. In languages that do allow run-time instanti-

A good overview of module systems can be found in [12].
"Rather unfortunately, the term has recently also been used
in the area of Object-Oriented programming to denote ob-
jects of a class that mainly contains functions.

ation, e.g. Standard ML, the implementations typically use
the same techniques that are used for objects in Object-
Oriented languages. (Most programmers make only limited
use of functors in ML because of the resulting performance
penalty.) Techniques like specialization or partial evalua-
tion [6] can be used to generate more efficient code when
only a few instances with partially static parameters are be-
ing created.

8. IMPLEMENTATION NOTES

e We have made a proof-of-concept prototype implemen-
tation, to show that the ideas presented in this paper
work as supposed, and do not interfere with existing
syntax. We hope to extend this to a full implementa-
tion in the near future.

e The current implementation of parameterized calls on
the form M:£(...) in Erlang/OTP is such that ex-
isting compiled code does not need to be recompiled
in order to handle the case where M is an instance of
an abstract module, as long as the runtime system is
updated.

e A new instruction needs to be added to the BEAM ab-
stract machine code external format, in order to sup-
port more efficient calls using abstract modules, and
the compiler must be extended to generate such in-
structions, when both the function name and the arity
(but not the module) are known. By using caching
techniques, as those used in certain Object-Oriented
systems, the overhead of looking up the target address
can be made very small.

e The current implementation of calls M: £(...) is very
inefficient. With the new compilation scheme, even
though handling of abstract modules is added, the net
result should be an overall speedup. Calling an ab-
stract module is expected to be only slightly slower
than calling a function closure, so that code can be
efficient even when abstract modules are heavily used.

e It is likely that compiled code for abstract modules
needs to be marked in some way, so that tools like a
debugger can know that the functions of such mod-
ules cannot be called without a reference to a “current
module instance”. We suggest that the compiler auto-
matically sets the module attribute abstract = true
for this purpose.

9. CONCLUDING REMARKS

We have described a straightforward way to extend the
ERLANG programming language with abstract modules, a
construct which solves several programming problems en-
countered in ERLANG programs of today. The technique
is not new — the same thing is done in Object Oriented
Programming to create instances of classes, the main dif-
ference being that a module instance in ERLANG does not
have a state component, since there are no destructive up-
dates. The concept of abstract modules can be traced back
to languages like Ada [9] and Standard ML [10], but the sys-
tem we suggest here owes more to dynamically typed Object
Oriented languages such as Smalltalk [7]. Adding parame-
terized modules to ERLANG fits in well with the existing

but little used language feature called behaviours (interface
specifications) which offer a limited but very useful form
of compile time checking. We expect that user-defined be-
haviours will become a very common thing if parameterized
modules are added.

10. ACKNOWLEDGMENTS

The author would like to thank Erik Stenman, Tobias Lin-
dahl and Per Gustafsson, as well as the anonymous referees,
for their comments on previous versions of this paper, and
Mikael Pettersson for discussions on efficient implementa-
tion and assistance with the prototype.

11. REFERENCES

[1] J. Armstrong, R. Virding, C. Wikstrom, and
M. Williams. Concurrent Programming in Erlang.
Prentice-Hall, second edition, 1996.

[2] T. Budd. An Introduction to Object-Oriented
Programming. Addison-Wesley, second edition, 1997.

[3] L. Cardelli, J. Donahue, L. Glassman, M. Jordan,
B. Kalsow, and G. Nelson. Modula-3 language
definition. SIGPLAN Notices, 27(8):15-42, Aug. 1992.

[4] O. Dahl and K. Nygaard. Simula, an Algol-based
simulation language. Communications of the ACM,
9(9):671-678, Sept. 1966.

[5] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[6] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice Hall, 1993.

[7] A. C. Kay. The early history of Smalltalk. ACM
SIGPLAN Notices, 28(3):69-75, Mar. 1993. The
Second ACM SIGPLAN History of Programming
Languages Conference (HOPL-II).

[8] B. Meyer. Eiffel, The Language. Prentice Hall,
Englewood Cliffs, 1992.

[9] Military Standard. Reference manual for the Ada
programming language. Technical Report
ANSI/MIL-STD-1815A-1983, United States
Government Printing Office, 1983.

[10] R. Milner, M. Tofte, and R. Harper. The Definition of
Standard ML. MIT Press, Cambridge, MA, 1990.

[11] B. Stroustrup. The C++ Programming Language.
Addison-Wesley, second edition, 1991.

[12] M. Zenger. Programming Language Abstractions for
Ezxtensible Software Components. PhD thesis, Ecole
Polytechnique Federale de Lausanne, Switzerland,
draft version, 2003.

