
1

Dryverl: a Flexible Erlang/C
Binding Compiler

Romain Lenglet and Shigeru Chiba
Tokyo Institute of Technology

5th ACM Erlang Workshop
2006-09-16

2

The problem: Erlang/C bindings

� How to integrate any Erlang and C code?
� Dryverl generates all the Erlang and C code that

implements a binding

� Purpose: offer maximum openness
� Programmers control much of the

implementation of a binding

� While also meeting those requirements:
� Transparency / available mechanism

� Hide and tricky implementation details�
� Cope with little openness / flexibility

� Efficiency of generated code

3

What is an Erlang to C binding?

� No standard terminology for cross-language
integration (?)
� 1 binding = 1 Erlang function implemented in C
� Information transmitted to/from C code:

� 1 Erlang term
� + 1 optional list of binaries (the port driver mechanism

allows to pass binaries by reference)
� Interactions can be two-way (interrogations) or

one-way (announcements)
� 3 available mechanisms: driver, port, node

Erlang code C code

term, [optional binaries]

term, [optional binaries] (if two-way only)

4

Openness = expressiveness of
the specification language

Erlang/C binding
specification

Erlang and C
source code

Erlang and C
source code

Erlang and C
source code

compile binding
as port driver

compile binding
as port prog.

compile binding
as C node

� Purpose of Dryverl
� Generates all the

code given a binding
specification

� Generate code for
any available
mechanism

� Openness: offers
maximum control
over a binding's
implementation

Openness = let users specify as much
as possible about a binding in the

binding's specification

5

Why is openness important?

� Integration of legacy Erlang APIs and C code
and Adaptation of idioms and type systems
� Most existing compilers are not flexible enough

and require wrappers
� More verbose, more difficult to maintain
� Using Dryverl: no need for wrappers

� Improved performance
� Terms must be encoded/decoded in Erlang/C

bindings
� Fine control of encoding helps
� E.g.: atoms encoded as integers

� Static global optimizations: easier iff a spec
contains everything, and in a structured format

6

Transparency / 3 mechanisms
(1/2)

� Strong similarities
� Erlang terms must

be encoded/decoded
� Same level of

abstraction
� Similar openness /

level of control
� But efficiency / �

safety trade-offs
� Transparency: hide

differences in detailsErlang emulator

Erlang emulator C node

C P

port
prog.

...

Erlang emulator

C P

linked-in
port driver

...

Erlang emulator

Safety

Efficiency

7

Transparency / 3 mechanisms
(2/2)

Erlang emulator

Erlang emulator C node

C P

port
prog.

...

Erlang emulator

C P

linked-in
port driver

...

Erlang emulator � P = port
� Emulator-provided

abstraction to
communicate with
non-Erlang code

� C = port controller

Dynamic library

Separate OS process

Child OS process

Pipe

TCP/IP

8

How is Dryverl open?

� How to achieve openness?
� = expressiveness of the specification language
� Mix of declarative and programmatic approach

� Declarative where appropriate
� Signatures of functions

� Mostly fragments of Erlang and C code + macros
� Encoding/decoding of terms
� Dictionaries (�value maps� that map C data and integers)
� More concise than using wrappers

� Existing spec languages are declarative only
� Simpler for simple cases
� But more difficult for difficult cases

� Openness is limited by transparency
� Dryverl opens only what can be opened using all

three mechanisms

9

What can be open? (1/2)

� Erlang/C bindings are distributed bindings
� Term must be encoded/decoded
� ...
� Similar to bindings in CORBA, Java RMI, etc.

� Model: ISO RM-ODP engineering viewpoint
� General model of distributed bindings / channels

10

What can be open? (2/2)

client
binder

client
object

server
object

server
binder

protocol
object

server

interceptor

protocol
object

client

client
stub

server
stub

channel

� Erlang/C bindings
are distributed
bindings / channels

� Port drivers are the
openness limiting
factor

� Only stubs are open
in all 3

� Open except for the
term encoding /
decoding part

C Nodes

Port programs

Port drivers

Erlang C

�Artificial� client stub process will be added in the case
of nodes, to get the same level of openness

11

Binding specification:
signature (1/2)

� Signature of the
Erlang function
� Arity
� Two- or one-way

� Documentation
� In OTP's edoc

format
� Type and name of

arguments
� Type of returned

term

client
binder

client
object

server
object

server
binder

protocol
object

server

interceptor

protocol
object

client

client
stub

server
stub

channel

Erlang C

12

Binding specification:
signature (2/2)

<def-erlang-input
function-
name=”print_hello”>

 <def-erlang-arg
name=”Message” type-
doc=”string()”/>

</def-erlang-input>

...
<def-erlang-output>

 <def-erlang-return

type-
doc=”{ok,int()}”/>

</def-erlang-output>

client
binder

client
object

server
object

server
binder

protocol
object

server

interceptor

protocol
object

client

client
stub

server
stub

channel

Erlang C

declarative specification

13

Binding specification:
data transformation

� Four data
transformation parts
in Erlang and C
stubs
� Arguments into 1

term + [binaries]
� E.g. atoms become

integer constants
� 1 term + [binaries]

into C variables
� And vice-versa

client
binder

client
object

server
object

server
binder

protocol
object

server

interceptor

protocol
object

client

client
stub

server
stub

channel

Erlang C

14

Binding specification:
input data transformation (1/2)

client
binder

client
object

server
object

server
binder

protocol
object

server

interceptor

protocol
object

client

client
stub

server
stub

channel

Erlang C

programmatic specification <encode-input>

 <encode-input-main-

term>

 string:strip(
 <erlang-arg

 name=”Message”/>)
 </encode-input-main-

term>

</encode-input>

args �
term + [binaries]

15

Binding specification:
input data transformation (2/2)

client
binder

client
object

server
object

server
binder

protocol
object

server

interceptor

protocol
object

client

client
stub

server
stub

channel

Erlang C

programmatic specification <decode-input>

 <assign-c-call-

variables>

 /*...*/
 <decode-input-
 string-into>

 <c-call-variable
 name=”msg”/>
 </decode-input-
 string-into>

 </assign-c-call-

variables>

</decode-input>

decode(term + [binaries])
 � C call variables

16

Binding specification:
C implementation (1/2)

� Arbitrary C code
� Typically, calls

functions of a legacy
C library

� Processes values of
the C call variables

� Modifies the C call
variables

client
binder

client
object

server
object

server
binder

protocol
object

server

interceptor

protocol
object

client

client
stub

server
stub

channel

Erlang C

17

Binding specification:
C implementation (2/2)

client
binder

client
object

server
object

server
binder

protocol
object

server

interceptor

protocol
object

client

client
stub

server
stub

channel

Erlang C

programmatic specification <execute-body>

 <process-c-call-

variables>

 int i;
 i = printf(“hello,
 %s\r\n”,
 <c-call-variable
 name=”msg”/>);
 <c-call-variable
 name=”prt”/> = i;
 </process-c-call-

variables>

</execute-body>

18

Binding specification:
output data transformation (1/2)

client
binder

client
object

server
object

server
binder

protocol
object

server

interceptor

protocol
object

client

client
stub

server
stub

channel

Erlang C

programmatic specification <encode-output>

 <encode-output-...>

 <encode-output-

 ulong>

 <c-call-variable
 name="prt"/>
 </encode-output-

 ulong>

 </encode-output...>

</encode-output>

encode(C call variables)
as term + [binaries]

19

Binding specification:
output data transformation (2/2)

client
binder

client
object

server
object

server
binder

protocol
object

server

interceptor

protocol
object

client

client
stub

server
stub

channel

Erlang C

programmatic specification <decode-output>

 <create-output-

 term>

 Prt = <erl-output-
 main-term/>,
 {ok, Prt}
 </create-output-

 term>

</encode-input>

term + [binaries]
 � returned term

20

Dryverl's binding specification
language

� The specification language allows specifying
� The Erlang function signature
� Data transformation Erlang and C code

� Including code usually in wrappers
� The executed C code
� Full control is given on those parts

� The specification language is an XML dialect
� Specified and documented in an XML Schema

� Dryverl is a set of XSLT 1.0 stylesheets

21

Bindings as port drivers (1/2)

� Only port drivers are currently supported as
a target

� This was the top priority because:
� Best performance

� Only mechanism which allows passing binaries by
reference

� Least open: this was the limiting factor for the
openness of Dryverl

� Most difficult to deal with
� Was designed for I/O drivers and fits well that purpose
� But not adapted to integrate arbitrary C code

22

Bindings as port drivers (2/2)

� Generated code
� Helper functions
� Port controller as

gen_server
� Port driver

C P
linked-in
port driver

...

Erlang emulator

hello.erl

Helper functions module: have the
signatures specified in the bindings specs

hello_gen_server.erl

Port controller as a gen_server:
implements the Erlang terms

transformation code

hello_drv.c + hello_drv.h

Port driver (dynamic library): maps the
Erlang terms to C variables, and

implements the main C code

23

Related works (1/2)

� Erlang/C binding generators
� EDTK 1.1

� The ancestor of Dryverl: many similarities
� Dryverl is more open and powerful
� Complete critical analysis on the Dryverl website

� IG (Interface Generator)
� Supports C-to-Erlang bindings
� Little openness: no way to specify function signatures...

� Cross-language bindings for other languages
� JNI, Python/C, GreenCard, etc.
� Bindings between similar languages
� Allow direct interactions without requiring

encoding/decoding
� Too different from the Erlang/C case

24

Related works (2/2)

� Open Distributed Processing frameworks
� Standards: Java RMI, CORBA...
� Open: xKernel, ObjectWeb Jonathan, FlexiNet...
� Similarity

� Stub compilers
� Very similar architecture (cf. ISO RM-ODP)

� Openness is much more limited in Erlang
� No control of binders and protocol objects
� Implemented in the �black-box� emulator
� When control is offered (cf. inet_ssl...), impossible to

control every binding separetely

25

Conclusion

� Dryverl generates the complete
implementation of Erlang/C bindings
� Openness: offers full control over transformation

of data, and the signatures of Erlang functions
� Can target transparently any mechanism
� Efficiency: automatic choice of best alternatives

to perform a binding call
� Drawback: XML is verbose, but Dryverl is a

backend for higher-level languages
� Perspectives

� Support port programs and C nodes
� C-to-Erlang bindings

27

Bonus slides (^_^)

28

Bindings as port drivers

� Invocation (1/2)
1.Helper function call

� print_hello()

2.gen_server �call�
� Or �cast�, if one-way

binding

3.Transforms args into
1 term + [binaries]

4.Calls port_call
� Or encodes term &

calls port_command

if [binaries] []�

C P
linked-in
port driver

...

Erlang emulator

1 2 3 4

29

Bindings as port drivers

� Invocation (2/2)
1.The emulator calls

outputv() or call()
� Whether we called

port_command() or
port_call()

2.Decodes the Erlang
term + [binaries] into
C variables

3.Main C code:
processes and
modifies those C
variables

C P
linked-in
port driver

...

Erlang emulator

1 2 3

30

Bindings as port drivers

� Termination (1/2)
1.Encodes C variables

into 1 Erlang term +
[binaries]

2.Calls
driver_output_t
erm

� Or returns the term in
the port_call call,

if [binaries] = []
� If [binaries] [] and �

port_call was

called, returns
noreply

C P
linked-in
port driver

...

Erlang emulator

2 1

For two-way bindings only

31

Bindings as port drivers

� Termination (2/2)
1.Receives 1 term +

[binaries] as a
message

1.Or the port_call

call returns a term

2.Transforms the term
+ [binaries] into one
term to return

3.Unblocks the
gen_server �call�

� gen_server:reply()

C P
linked-in
port driver

...

Erlang emulator

2

For two-way bindings only

13

32

Bindings as port drivers

� Asynchronous operations
� Multiple client calls can be executed

simultaneously
� gen_server �casts� for one-way bindings

� Problems with current implementation
� Uses emulator's driver_async function to start

a concurrent task for every call
� Calls driver_output_term in tasks: not

allowed, although worked in my small-scale tests
� Perspectives

� Start multiple ports, and avoid driver_async
� One gen_server will dispatch to port controllers
� Transparent to clients

