Dryverl: a Flexible Erlang/C
Binding Compiler

Romain Lenglet and Shigeru Chiba
Tokyo Institute of Technology

5" ACM Erlang Workshop
2006-09-16

The problem: Erlang/C bindings

* How to integrate any Erlang and C code?
- Dryverl generates all the Erlang and C code that
implements a binding

* Purpose: offer maximum openness
- Programmers control much of the
implementation of a binding

* While also meeting those requirements:

- Transparency / available mechanism
 Hide # and tricky implementation details
» Cope with little openness / flexibility

- Efficiency of generated code

What is an Erlang to C binding?

* No standard terminology for cross-language
integration (?)
- 1 binding = 1 Erlang function implemented in C
- Information transmitted to/from C code:
* 1 Erlang term

 + 1 optional list of binaries (the port driver mechanism
allows to pass binaries by reference)

- Interactions can be two-way (interrogations) or
one-way (announcements)

« 3 available mechanisms: driver, port, node

Openness = expressiveness of
the specification language

: * Purpose of Dryverl
e st oo e |~ Generates all the
binding's specification code given a binding
specification
- Generate code for
any available
mechanism

Erlang/C binding
specification

- Openness: offers
maximum control
over a binding's

\ term, [optional binaries] >
Erlang code C code
< term, [optional binaries] (if two-way only) |

implementation

5 I |
I Why is openness important? Transparenc;(q//%mechamsms

* Integration of legacy Erlang APIs and C code = » Strong similarities
I and Adaptation of idioms and type systems I Q\ oD, - Erlang terms must
- Most existing compilers are not flexible enough Q==(r be encoded/decoded
and require wrappers T il ot - Same level of
- More verbose, more difficult to maintain NN @S pro. abstraction
— . . afety | @<_>®‘» — Simil /
Using Dryverl: no need for wrappers Oy imilar openness
 Improved performance || ffigiency level of control
- Terms must be encoded/decoded in Erlang/C Elong emlater____ C oo But # efficiency /
bindings Q=3O | safety trade-offs
* Fine control of encoding helps \/ E o Transparency: hide
* E.g.: atoms encoded as integers ﬁ; _____ J<>()i . . .
- Static global optimizations: easier iff a spec Erlang emlator L differences in details

contains everything, and in a structured format

| N
Transparency / 3 mechanisms : >
How is Dryverl open
Dynamic library (2/2) I
_ :
Frlns cnlator * P = port * How to achieve openness?
I Q\ - Emulator-provided I - = expressiveness of the specification language
Q"’@"’@‘*’@ abstraction to - Mix of declarative and programmatic approach
communicate with « Declarative where appropriate
Frlang emulator port. non-ErIang code - Signatures of functions

* Mostly fragments of Erlang and C code + macros

-~
QH@"’@'*’ R e C= port controller - Encoding/decoding of terms
|| . - Dictionaries (“value maps” that map C data and integers)
__ \ Child OS process - More concise than using wrappers
C

Ta Vi - Existing spec languages are declarative only

QO] Pipe « Simpler for simple cases
» But more difficult for difficult cases

* Openness is limited by transparency
Separate OS process - Dryverl opens only what can be opened using all
three mechanisms

TCP/IP

Binding specification:
signature (1/2)

 Signature of the

Erlang ¢ Erlang function
Sbiect object - Arity
—— } - Two- or one-way
olient server * Documentation
3 3 - In OTP's edoc
client format
e e - Type and name of
e Sl arguments
protocol protocol -
rotoco m— rotoco ;I'e3;$ne of returned
e

Binding specification:
signature (2/2)

<def-erlang-input
C function-

declarative specification

Erlang
client server name="print hello”>
object object <def-erlang-arg
* $ name="Message” type-
lient = - ”
clien servor doc="string()"/>
§) </def-erlang-input>
c}ienL server c°
binder binder <def-erlang-output>
)) <def-erlang-return
client server =
protocol protocol type .
object | object doc=" {Ok ’ int () } " />
channe
: </def-erlang-output>
e

I 9 I 10
I What can be open? (1/2) I What can be open? (2/2)
“Artificial” client stub process will be added in the case
of nodes, to get the same level of openness
* Erlang/C bindings are distributed bindings * Erlang/C bindings
- Term must be encoded/decoded I Erlang c are distributed
e - bicct Heet bindings / channels
- Similar to bindings in CORBA, Java RMI, etc. : —3— . Port drivers are the
« Model: ISO RM-ODP engineering viewpoint it 1 openness limiting
~ General model of distributed bindings / channels 1_¢ ortprogramy: | y factor
binder binder * Only stubs are open
v v in all 3
p;%il o | | ¢ Open except for the
1 chamel - term encoding /
[imereeror e | decoding part
11 12

I 13 I 14
Binding specification: Binding specification:
I data transformation I input data transformation (1/2)
* Four data programmatic specification <encode-input>
I T ¢ transformation parts I Erlang c <encode-input-main-
clien server . clien server term>
et et in Erlang and C fhject Sbiect et s s
v ¥ stubs —4 ”__4_:_ <erlang-arg
Cliﬁﬁt solf‘xﬁr _ Arguments Into 1 cliﬁﬁt targS :’ b) name:"Message" />)
) } term + [binaries] 3 erm ['na”ei]— </encode-input-main-
client server O Eg atoms become client server term>
binder binder integer ConStantS binder binder </encode—input>
v V - 1 term + [binaries] ' '
client server . . client server
protocol protocol |nt0 C va rlables protocol protocol
object hannol object _ And V|Ce-versa object hannol object
b b
15 16

I Binding specification:

I input data transformation (2/2)

programmatic specification
Erlang C

client server
nhiect object

decode(term + [binaries]) i —

— C call variables
stub b
client server
binder binder
client server
protocol protocol
object object
channel
I s

<decode-input>
<assign-c-call-
variables>
[*...%/
<decode-input-
string-into>
<c-call-variable
name="msg"” />
</decode-input-
string-into>
</assign-c-call-
variables>
</decode-input>

Binding specification:
C implementation (1/2)

Erlang C
client server
object object
client server

stub stub
client server
binder binder
client server
protocol protocol
object object

channel
e

* Arbitrary C code

- Typically, calls
functions of a legacy
C library

- Processes values of
the C call variables

- Modifies the C call
variables

I 17 I 18
Binding specification: Binding specification:
I C implementation (2/2) I output data transformation (1/2)
programmatic specification <execute-body> programmatic specification <encode-output>
I Erlang c <process-c-call- I Erlang c <encode-output-...>
client server variables> cllent server <enc°de_°utput_
object object int i; d”h'g I bl object ulong>
$ v i = printf(“hello, en(io &(+ (l:)a variables) —— <c-call-variable
Cééﬁgt sz{;ﬁr %S\r\n" , as ermsm [Inal’leS] scrf‘:ﬁr name=" prt" />
$ $ <c-call-variable |—|$ $ </encode-output-
client server name="msg”/>) 7 client server ulong>
binder binder <c_ca11_variab1e binder binder </encode—output. c >
)) name="prt”/> = i;)) </encode-output>
client server </process-c-call- client server
protocol protocol . protocol protocol
object chammel object /varlablei> 1 object chammel object
T—’MA </execute-body> T—’MA
19 20

I Binding specification:
I output data transformation (2/2)

programmatic specification <decode-output>

Erlang c <create-output-
olient sorver term>
object object Prt = <erl-output-
—— _ + main-term/>,
clienc | term + [binaries] {ok, Prt}
3 — returned term _ </create-output-
. ¥ term>
client server
binder binder </encode-input>

client server
protocol protocol

object object
channel

bt

Dryverl's binding specification
language

- The Erlang function signature
- Data transformation Erlang and C code
* Including code usually in wrappers
- The executed C code
- Full control is given on those parts
* The specification language is an XML dialect
- Specified and documented in an XML Schema

* Dryverl is a set of XSLT 1.0 stylesheets

I » The specification language allows specifying

I 21 I 22
I Bindings as port drivers (1/2) I Bindings as port drivers (2/2)
hello.erl
° 1 Hel functi dule: h th °
Only port drivers are currently supported as signatires specifid in the bindings specs |© Oenerated code
a target - Helper functions
» This was the top priority because: — Port controller as
- Best performance Sl
« Only mechanism which allows passing binaries by B Tang emlator - Port driver
reference = e
~ Least open: this was the limiting factor for the QD0 D
openness of Dryverl
- MOSt d|ff|C.U|t to deal Wlth 2 hello drv.c+hello drv.h
» Was designed for I/O drivers and fits well that purpose Port driver (dynamic library): maps the
« But not adapted to integrate arbitrary C code L e s Erlang terms to C variables, and
qut controller as a gen_server: implements the main C code
implements the Erlang terms
transformation code
23 24

Related works (1/2)

 Erlang/C binding generators

- EDTK 1.1
» The ancestor of Dryverl: many similarities
* Dryverl is more open and powerful
« Complete critical analysis on the Dryverl website

- 1G (Interface Generator)
 Supports C-to-Erlang bindings
* Little openness: no way to specify function signatures...
» Cross-language bindings for other languages
- JNI, Python/C, GreenCard, etc.
- Bindings between similar languages
- Allow direct interactions without requiring
encoding/decoding
- Too different from the Erlang/C case

Related works (2/2)

* Open Distributed Processing frameworks
- Standards: Java RMI, CORBA...
- Open: xKernel, ObjectWeb Jonathan, FlexiNet...
— Similarity
» Stub compilers
* Very similar architecture (cf. ISO RM-ODP)
- Openness is much more limited in Erlang
* No control of binders and protocol objects
» Implemented in the “black-box” emulator
« When control is offered (cf. inet_ssl...), impossible to
control every binding separetely

I 25

I Conclusion

implementation of Erlang/C bindings

- Openness: offers full control over transformation
of data, and the signatures of Erlang functions

- Can target transparently any mechanism

- Efficiency: automatic choice of best alternatives
to perform a binding call

- Drawback: XML is verbose, but Dryverl is a
backend for higher-level languages

* Perspectives
- Support port programs and C nodes
- C-to-Erlang bindings

I * Dryverl generates the complete

The Dryverl project

C‘]\ryverl

* Dryverl is Free Software (BSD license)
* It can be downloaded from:

http://dryverl.objectweb.org/

26

I 21

I Bonus slides (*_*)

Bindings as port drivers

* Invocation (1/2)
1.Helper function call
e print hello()
2.gen_server “call”
* Or “cast”, if one-way

binding
3.Transforms args into

1 term + [binaries]
4.Calls port call

* Or encodes term &
calls port command

if [binaries] # []

28

I 29 I 30
I Bindings as port drivers I Bindings as port drivers
* Invocation (2/2) * Termination (1/2)
I 1.The emulator calls I 1.Encodes C variables
2] |3 outputv() or call() 2| |1 into 1 Erlang term +
 Whether we called [binaries]
port_command() or 2.Calls
C Erl{ing enylamr port_ca"() C]laﬂg enylamr d : t t t
@e@e@@,@x Tinkéa-ii 2.Decodes the Erlang O (DO ei;ve PR
term + [binaries] into * Or returns the term in
C v_arlables the port call call,
3.Main C code: if [binaries] = []
processes and For two-way bindings only « If [binaries] # [] and
modifies those C port_call was
variables called, returns
noreply
I 31 I 32
I Bindings as port drivers I Bindings as port drivers

» Termination (2/2)
1.Receives 1 term +
[binaries] as a
message
1.0rthe port call
call returns a term
2.Transforms the term
+ [binaries] into one
term to return
3.Unblocks the
gen_server “call’

* gen_server:reply ()

£,

0y OB, UT

For two-way bindings only

« Asynchronous operations
- Multiple client calls can be executed
simultaneously
- gen_server “casts” for one-way bindings
* Problems with current implementation
- Uses emulator's driver async function to start
a concurrent task for every call
- Calls driver output termin tasks: not
allowed, although worked in my small-scale tests
* Perspectives
- Start multiple ports, and avoid driver async
- One gen_server will dispatch to port controllers
- Transparent to clients

